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details
1. Anyone still looking for a group?
2. Tee shirts?
3. Group photo due Sep 23 and I’ll want to 

meet with each group shortly after.
4. Project plans due Oct 6.
5. Still fiddling with the schedule.
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Browser Website

Imagine the connection between a browser and a website as a long pipe.
At each end is a socket you can read or write from as if it was a file.
Anything written into one end pops out and can be read at the other.

HTTP over TCP/IP
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Browser Website

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Send a GET message to request the page.
5. Read what comes back.

HTTP over TCP/IP



Reading and serving webpages

We’ll discuss what’s needed to build the first of three 
small projects we’re planning as lab and hw exercises:

1. LinuxGetUrl Read an HTTP page.

2. LinuxGetSsl Read an HTTPS page.

3. LinuxTinyServer A simple HTTP server.
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tcsh-3% head LinuxTinyServer.cpp
// Linux tiny HTTP server.
// Nicole Hamilton  nham@umich.edu

// This variation of LinuxTinyServer supports a simple plugin interface
// to allow "magic paths" to be intercepted.

// Usage:  LinuxTinyServer port rootdirectory

// Compile with g++ -pthread LinuxTinyServer.cpp -o LinuxTinyServer
// To run under WSL (Windows Subsystem for Linux), must elevate with
tcsh-4% ls website
Images  Styles  index.htm
tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Here’s LinuxTinyServer.
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tcsh-5% head LinuxGetUrl.cpp
// Linux get URL utility that copies the HTTP page to stdout.
// Nicole Hamilton  nham@umich.edu

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <iostream>
#include <string.h>
#include <string>
tcsh-6% LinuxGetUrl
Usage:  LinuxGetUrl url
tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

LinuxGetUrl does an HTTP Get.
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tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:56032

GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Requested path = /index.htm
Actual path = website/index.htm

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

The server sees the Get request and returns the file.
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tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

tcsh-8%

LinuxGetUrl reads the file.
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tcsh-2% ./LinuxGetUrl http://localhost:5000/zork.htm
Service = http, Host = localhost, Port = 5000, Path = zork.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /zork.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 404 Not Found
Content-Length: 0
Connection: close

tcsh-3%

Errors are reported 400 and other codes.



We’ll now go through the mechanics of making 
this happen.
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Application

Transport

Internet

Network Access

DHCP, DNS, FTP, HTTP, HTTPS, 
POP, SMTP, SSH, etc.

TCP and UDP

IP address:  IPv4 or IPv6

Link level:  MAC address
Physical:  Cable, fiber, wireless

TCP/IP Model



IP routing

Uses a routing table to select a next hop router.

Given a destination IP address, D, and network prefix, N:

if ( N matches a directly connected network address )
Deliver datagram to D over that network link;

else if ( The routing table contains a route for N )
Send datagram to the next-hop address listed in the routing table;

else if ( a default route exists )
Send datagram to the default route;

else
Send a forwarding error message to the originator;
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To get an IP address

1. Parse the HTTPS path to identify the host (domain 
name) we’re trying to reach.

2. Find the IP address for that host using a Domain 
Name Server (DNS).
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Type Name Value TTL Actions
A @ 160.153.46.5 600 seconds
A admin 160.153.46.5 600 seconds
A mail 160.153.46.5 600 seconds
:
CNAME webmail @ 1 Hour
CNAME www @ 1 Hour
:
MX @ mail.hamiltonlabs.com (Priority: 0) 1 Hour Edit
NS @ ns61.domaincontrol.com 1 Hour
NS @ ns62.domaincontrol.com 1 Hour
SOA @ Primary nameserver: ns61.domaincontrol.com. 600 seconds

DNS Records

An A record defines a host address.
A CNAME record defines a canonical name for alias.
An MX (Mail eXchange) record defines a mail server.
An NS record defines a name server.
An SOA (Start of Authority) defines the primary name server.



DHCP
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We usually rely on DHCP 
(Dynamic Host Configuration 
Protocol) to assign an IP address 
to our machine and DNS server.
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class ParsedUrl
{
public:

const char *CompleteUrl;
char *Service,

*Host,
*Port,
*Path;

ParsedUrl( const char *url );
~ParsedUrl( );

};

Let’s assume a simple mechanism for parsing a full URL  into the components.
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Example use:

ParsedUrl url( "http://localhost:5000/index.htm" );
cout << "Service = " << url.Service <<

", Host = " << url.Host <<
", Port = " << url.Port <<
", Path = " << url.Path << endl;

Should print:

Service = http, Host = localhost, Port = 5000, Path = index.htm
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#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host domain and a service, 
getaddrinfo() returns one or more addrinfo structures, each of which contains 
an Internet address that can be specified in a call to bind(2) or connect(2).
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#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host and a service, 
getaddrinfo() returns one or more addrinfo structures, each of which contains 
an Internet address that can be specified in a call to bind(2) or connect(2) to 
that website.
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// Get the host address, supplying hints for
// what we're looking for.

struct addrinfo *address, hints;
memset( &hints, 0, sizeof( hints ) );
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

int getaddrResult = getaddrinfo( url.Host,
*url.Port ? url.Port : "80", &hints, &address );

Here’s an example use.

Later, it must be freed.

freeaddrinfo( address );
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struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

This is what the addrinfo structure looks like.  It contains an Internet address 
that can be specified in a call to bind(2) or connect(2).

PrintAddress( ( sockaddr_in * )address->ai_addr,
sizeof( struct sockaddr ) );

The interesting part is the ai_addr, the actual IP address, which we can print.
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void PrintAddress( const sockaddr_in *s, const size_t saLength )
{
const struct in_addr *ip = &s->sin_addr;
uint32_t a = ntohl( ip->s_addr );

cout << "Host address length = " << saLength << " bytes" << endl;
cout << "Family = " << s->sin_family <<

", port = " << ntohs( s->sin_port ) <<
", address = " << ( a >> 24 ) << '.' <<

( ( a >> 16 ) & 0xff ) << '.' <<
( ( a >> 8 ) & 0xff ) << '.' <<
( a & 0xff ) << endl;

}

Here’s a simple print routine.
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Example use:

int getaddrResult = getaddrinfo( "www.nytimes.com", "80",
&hints, &address );

PrintAddress( ( sockaddr_in * )address->ai_addr,
sizeof( struct sockaddr ) );

Should print:

Host address length = 16 bytes
Family = 2, port = 80, address = 151.101.185.164
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

socket() creates an endpoint for communication and returns a file descriptor that can 
be used for reading and writing.
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The domain argument specifies a communication domain.  Here are the most 
common:

Name Purpose
AF_UNIX, AF_LOCAL Local communication
AF_INET IPv4 Internet protocols
AF_INET6 IPv6 Internet protocols
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The socket has the indicated type, which specifies the communication semantics.  The 
most common is SOCK_STREAM, a sequenced, reliable connection with two-way byte 
streams.

The protocol is usually IPPROTO_TCP.



34

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

connect() connects the socket to the specified IP address.  The addrlen argument 
specifies the size of addr structure.
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// Create a TCP/IP socket.

int s = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );
assert( s != -1 );

// Connect the socket to the host address.

int connectResult = connect( s, address->ai_addr,
sizeof( struct sockaddr ) );

assert( connectResult == 0 );

Here’s an example creating a socket and connecting it to an address.
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#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

send() writes data into the socket.  recv() reads data.  Flags allow close-on-exec, 
noblocking reads/writes and other options.

The only difference between send() and write() or between recv() and read() is the 
presence of the optional flags.  With a zero flags argument, send() is equivalent to 
write() and recv() is equivalent to read().
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GET / HTTP/1.1
Host: www.nytimes.com
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Here’s a sample GET message we might send.  Notice that the User-agent field 
must contain your contact info in 440.

Some sites will not even respond without a User-Agent field.  It’s a free text 
field and can be anything as long as it exists.  It’s typically the name of the 
software product that generated the Get + a slash followed by a version 
number.  The OS or build environment is usually given in parens.

The Accept: and Accept-Encoding: fields are not required but typically 
provided.
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string getMessage;
:
send( s, getMessage.c_str( ), getMessage.length( ), 0 );

Here’s an example sending the Get message over socket s.
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char buffer[ 10240 ];
int bytes;

while ( ( bytes = recv( s, buffer, sizeof( buffer ), 0 ) ) > 0 )
write( 1, buffer, bytes );

Here’s an example reading from a socket and writing to stdout.

We’ll talk more about read( ) and write( ) when we get to the filesystem.
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main( int argc, char **argv )
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.

// Send a GET message.

// Read from the socket until there's no more data, copying it to
// stdout.

// Close the socket and free the address info structure.
}

Here’s the entire main( ), minus only all the code that you will have to write.
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Browser Website

Under HTTPS, data is encrypted before being sent and decrypted when 
received using a public key mechanism that allows both ends to agree on 
a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

Here, we’ll use the OpenSSL library.

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted
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To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Build an SSL layer and establish a secure connection.
5. Send a GET message to request the page.
6. Read what comes back.

Browser Website

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted
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#include <openssl/ssl.h>

int SSL_library_init(void);
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
int SSL_set_fd(SSL *ssl, int fd);
int SSL_connect(SSL *ssl);
int SSL_read(SSL *ssl, void *buf, int num);
int SSL_write(SSL *ssl, const void *buf, int num);

SSL_library_init() initializes the SSL library.
SSL_CTX_new() creates a new SSL_CTX object as framework to establish TLS/SSL 
enabled connections.

SSL_set_fd() sets the file descriptor fd as the input/output facility for the TLS/SSL 
(encrypted) side of ssl. fd will typically be the socket file descriptor of a network 
connection.

SSL_connect() initiates the TLS/SSL handshake with a server.

SSL_write() writes num bytes from the buffer buf into the specified ssl connection.
SSL_read() tries to read num bytes from the specified ssl into the buffer buf.
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main( int argc, char **argv )
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.
// Build an SSL layer and set it to read/write // to the socke
t we've connected.

// Fill in the socket we'll be using with SSL using 
SSL_set_fd.

// Send a GET message over the secure socket.

// Read from the secure socket until there's no more data, copying 
it to

// stdout.

// l  d th SSL lA ith SSL h td  S f  

Here’s the entire main( ) for LinuxGetSSL, minus only all the code that you will write.
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