
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 5:  TCP/IP DNS and Sockets

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu


Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl
7. LinuxGetSsl

2



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

3



details
1. Anyone still looking for a group?
2. Tee shirts?
3. Group photo due Sep 23 and I’ll want to 

meet with each group shortly after.
4. Project plans due Oct 6.
5. Still fiddling with the schedule.

4



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

5



6

Browser Website

Imagine the connection between a browser and a website as a long pipe.
At each end is a socket you can read or write from as if it was a file.
Anything written into one end pops out and can be read at the other.

HTTP over TCP/IP



7

Browser Website

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Send a GET message to request the page.
5. Read what comes back.

HTTP over TCP/IP



Reading and serving webpages

We’ll discuss what’s needed to build the first of three 
small projects we’re planning as lab and hw exercises:

1. LinuxGetUrl Read an HTTP page.

2. LinuxGetSsl Read an HTTPS page.

3. LinuxTinyServer A simple HTTP server.

8



9

tcsh-3% head LinuxTinyServer.cpp
// Linux tiny HTTP server.
// Nicole Hamilton  nham@umich.edu

// This variation of LinuxTinyServer supports a simple plugin interface
// to allow "magic paths" to be intercepted.

// Usage:  LinuxTinyServer port rootdirectory

// Compile with g++ -pthread LinuxTinyServer.cpp -o LinuxTinyServer
// To run under WSL (Windows Subsystem for Linux), must elevate with
tcsh-4% ls website
Images  Styles  index.htm
tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Here’s LinuxTinyServer.



10

tcsh-5% head LinuxGetUrl.cpp
// Linux get URL utility that copies the HTTP page to stdout.
// Nicole Hamilton  nham@umich.edu

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <iostream>
#include <string.h>
#include <string>
tcsh-6% LinuxGetUrl
Usage:  LinuxGetUrl url
tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

LinuxGetUrl does an HTTP Get.



11

tcsh-5% ./LinuxTinyServer 5000 website
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:56032

GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Requested path = /index.htm
Actual path = website/index.htm

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

The server sees the Get request and returns the file.



12

tcsh-7% ./LinuxGetUrl http://localhost:5000/index.htm | head -20
Service = http, Host = localhost, Port = 5000, Path = index.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

tcsh-8%

LinuxGetUrl reads the file.



13

tcsh-2% ./LinuxGetUrl http://localhost:5000/zork.htm
Service = http, Host = localhost, Port = 5000, Path = zork.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /zork.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 404 Not Found
Content-Length: 0
Connection: close

tcsh-3%

Errors are reported 400 and other codes.



We’ll now go through the mechanics of making 
this happen.

14



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

15



16

Application

Transport

Internet

Network Access

DHCP, DNS, FTP, HTTP, HTTPS, 
POP, SMTP, SSH, etc.

TCP and UDP

IP address:  IPv4 or IPv6

Link level:  MAC address
Physical:  Cable, fiber, wireless

TCP/IP Model



IP routing

Uses a routing table to select a next hop router.

Given a destination IP address, D, and network prefix, N:

if ( N matches a directly connected network address )
Deliver datagram to D over that network link;

else if ( The routing table contains a route for N )
Send datagram to the next-hop address listed in the routing table;

else if ( a default route exists )
Send datagram to the default route;

else
Send a forwarding error message to the originator;

17



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

18



To get an IP address

1. Parse the HTTPS path to identify the host (domain 
name) we’re trying to reach.

2. Find the IP address for that host using a Domain 
Name Server (DNS).

19



20

Type Name Value TTL Actions
A @ 160.153.46.5 600 seconds
A admin 160.153.46.5 600 seconds
A mail 160.153.46.5 600 seconds
:
CNAME webmail @ 1 Hour
CNAME www @ 1 Hour
:
MX @ mail.hamiltonlabs.com (Priority: 0) 1 Hour Edit
NS @ ns61.domaincontrol.com 1 Hour
NS @ ns62.domaincontrol.com 1 Hour
SOA @ Primary nameserver: ns61.domaincontrol.com. 600 seconds

DNS Records

An A record defines a host address.
A CNAME record defines a canonical name for alias.
An MX (Mail eXchange) record defines a mail server.
An NS record defines a name server.
An SOA (Start of Authority) defines the primary name server.



DHCP

21

We usually rely on DHCP 
(Dynamic Host Configuration 
Protocol) to assign an IP address 
to our machine and DNS server.



22

class ParsedUrl
{
public:

const char *CompleteUrl;
char *Service,

*Host,
*Port,
*Path;

ParsedUrl( const char *url );
~ParsedUrl( );

};

Let’s assume a simple mechanism for parsing a full URL  into the components.



23

Example use:

ParsedUrl url( "http://localhost:5000/index.htm" );
cout << "Service = " << url.Service <<

", Host = " << url.Host <<
", Port = " << url.Port <<
", Path = " << url.Path << endl;

Should print:

Service = http, Host = localhost, Port = 5000, Path = index.htm



24

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host domain and a service, 
getaddrinfo() returns one or more addrinfo structures, each of which contains 
an Internet address that can be specified in a call to bind(2) or connect(2).



25

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

Given node and service, which identify an Internet host and a service, 
getaddrinfo() returns one or more addrinfo structures, each of which contains 
an Internet address that can be specified in a call to bind(2) or connect(2) to 
that website.



26

// Get the host address, supplying hints for
// what we're looking for.

struct addrinfo *address, hints;
memset( &hints, 0, sizeof( hints ) );
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

int getaddrResult = getaddrinfo( url.Host,
*url.Port ? url.Port : "80", &hints, &address );

Here’s an example use.

Later, it must be freed.

freeaddrinfo( address );



27

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

This is what the addrinfo structure looks like.  It contains an Internet address 
that can be specified in a call to bind(2) or connect(2).

PrintAddress( ( sockaddr_in * )address->ai_addr,
sizeof( struct sockaddr ) );

The interesting part is the ai_addr, the actual IP address, which we can print.



28

void PrintAddress( const sockaddr_in *s, const size_t saLength )
{
const struct in_addr *ip = &s->sin_addr;
uint32_t a = ntohl( ip->s_addr );

cout << "Host address length = " << saLength << " bytes" << endl;
cout << "Family = " << s->sin_family <<

", port = " << ntohs( s->sin_port ) <<
", address = " << ( a >> 24 ) << '.' <<

( ( a >> 16 ) & 0xff ) << '.' <<
( ( a >> 8 ) & 0xff ) << '.' <<
( a & 0xff ) << endl;

}

Here’s a simple print routine.



29

Example use:

int getaddrResult = getaddrinfo( "www.nytimes.com", "80",
&hints, &address );

PrintAddress( ( sockaddr_in * )address->ai_addr,
sizeof( struct sockaddr ) );

Should print:

Host address length = 16 bytes
Family = 2, port = 80, address = 151.101.185.164



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

30



31

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

socket() creates an endpoint for communication and returns a file descriptor that can 
be used for reading and writing.



32

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The domain argument specifies a communication domain.  Here are the most 
common:

Name Purpose
AF_UNIX, AF_LOCAL Local communication
AF_INET IPv4 Internet protocols
AF_INET6 IPv6 Internet protocols



33

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
int close(int fd);

The socket has the indicated type, which specifies the communication semantics.  The 
most common is SOCK_STREAM, a sequenced, reliable connection with two-way byte 
streams.

The protocol is usually IPPROTO_TCP.



34

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

connect() connects the socket to the specified IP address.  The addrlen argument 
specifies the size of addr structure.



35

// Create a TCP/IP socket.

int s = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );
assert( s != -1 );

// Connect the socket to the host address.

int connectResult = connect( s, address->ai_addr,
sizeof( struct sockaddr ) );

assert( connectResult == 0 );

Here’s an example creating a socket and connecting it to an address.



36

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

send() writes data into the socket.  recv() reads data.  Flags allow close-on-exec, 
noblocking reads/writes and other options.

The only difference between send() and write() or between recv() and read() is the 
presence of the optional flags.  With a zero flags argument, send() is equivalent to 
write() and recv() is equivalent to read().



37

GET / HTTP/1.1
Host: www.nytimes.com
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

Here’s a sample GET message we might send.  Notice that the User-agent field 
must contain your contact info in 440.

Some sites will not even respond without a User-Agent field.  It’s a free text 
field and can be anything as long as it exists.  It’s typically the name of the 
software product that generated the Get + a slash followed by a version 
number.  The OS or build environment is usually given in parens.

The Accept: and Accept-Encoding: fields are not required but typically 
provided.



38

string getMessage;
:
send( s, getMessage.c_str( ), getMessage.length( ), 0 );

Here’s an example sending the Get message over socket s.



39

char buffer[ 10240 ];
int bytes;

while ( ( bytes = recv( s, buffer, sizeof( buffer ), 0 ) ) > 0 )
write( 1, buffer, bytes );

Here’s an example reading from a socket and writing to stdout.

We’ll talk more about read( ) and write( ) when we get to the filesystem.



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl

40



41

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main( int argc, char **argv )
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.

// Send a GET message.

// Read from the socket until there's no more data, copying it to
// stdout.

// Close the socket and free the address info structure.
}

Here’s the entire main( ), minus only all the code that you will have to write.



Agenda

1. Course details.
2. Objective:  Read a webpage.
3. TCP/IP.
4. DNS.
5. Sockets.
6. LinuxGetUrl
7. Preview of SSL

42



Agenda

1. Course details.
2. Producer/consumer relationships and locks.
3. Sockets.
4. SSL.

43



44

Browser Website

Under HTTPS, data is encrypted before being sent and decrypted when 
received using a public key mechanism that allows both ends to agree on 
a secret session key.

Done using a Secure Socket Layer (SSL) wrapper around a regular socket.

Here, we’ll use the OpenSSL library.

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted



45

To read a page from a website:
1. Look up the TCP/IP address of the website.
2. Create a socket.
3. Connect the socket to that address.
4. Build an SSL layer and establish a secure connection.
5. Send a GET message to request the page.
6. Read what comes back.

Browser Website

HTTPS over TCP/IPencrypted

decrypted encrypted

decrypted



46

#include <openssl/ssl.h>

int SSL_library_init(void);
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
int SSL_set_fd(SSL *ssl, int fd);
int SSL_connect(SSL *ssl);
int SSL_read(SSL *ssl, void *buf, int num);
int SSL_write(SSL *ssl, const void *buf, int num);

SSL_library_init() initializes the SSL library.
SSL_CTX_new() creates a new SSL_CTX object as framework to establish TLS/SSL 
enabled connections.

SSL_set_fd() sets the file descriptor fd as the input/output facility for the TLS/SSL 
(encrypted) side of ssl. fd will typically be the socket file descriptor of a network 
connection.

SSL_connect() initiates the TLS/SSL handshake with a server.

SSL_write() writes num bytes from the buffer buf into the specified ssl connection.
SSL_read() tries to read num bytes from the specified ssl into the buffer buf.



47

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int main( int argc, char **argv )
{
// Parse the URL

// Get the host address.

// Create a TCP/IP socket.

// Connect the socket to the host address.
// Build an SSL layer and set it to read/write // to the socke
t we've connected.

// Fill in the socket we'll be using with SSL using 
SSL_set_fd.

// Send a GET message over the secure socket.

// Read from the secure socket until there's no more data, copying 
it to

// stdout.

// l  d th SSL lA ith SSL h td  S f  

Here’s the entire main( ) for LinuxGetSSL, minus only all the code that you will write.


	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 5:  TCP/IP DNS and Sockets
	Agenda
	Agenda
	details
	Agenda
	Slide Number 6
	Slide Number 7
	Reading and serving webpages
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Agenda
	Slide Number 16
	IP routing
	Agenda
	To get an IP address
	Slide Number 20
	DHCP
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Agenda
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Agenda
	Slide Number 41
	Agenda
	Agenda
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

